首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16640篇
  免费   9篇
  国内免费   1篇
林业   3632篇
农学   1301篇
基础科学   138篇
  2791篇
综合类   729篇
农作物   2134篇
水产渔业   1802篇
畜牧兽医   1100篇
园艺   1117篇
植物保护   1906篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   15篇
  2019年   14篇
  2018年   2758篇
  2017年   2717篇
  2016年   1186篇
  2015年   71篇
  2014年   26篇
  2013年   41篇
  2012年   806篇
  2011年   2139篇
  2010年   2112篇
  2009年   1260篇
  2008年   1322篇
  2007年   1580篇
  2006年   32篇
  2005年   101篇
  2004年   105篇
  2003年   153篇
  2002年   63篇
  2001年   9篇
  2000年   44篇
  1999年   7篇
  1998年   1篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   13篇
  1992年   7篇
  1990年   1篇
  1989年   7篇
  1988年   17篇
  1987年   4篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1979年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Diploid wheat (Triticum monococcum L, AmAm) is an ideal material for induced mutations which can be easily characterized and transferred to polyploid wheats. The EMS-induced brittle culm mutants, brc1, brc2, and brc3 used in the present investigation, were isolated from T. monococcum. All the brittle mutants had brittle roots, leaves, leaf sheaths, culms, and spikes, and were also susceptible to lodging. The mutants had 47–57% reduced α-cellulose in the secondary cell walls than that of T. monococcum indicating that all of them had defective synthesis of cellulose. All the mutants were monogenic recessive. Bulk segregation analysis of the mutants, using Am genome anchored SSR markers in their F 2 populations with T. boeoticum, located the mutants, brc1, brc2, and brc3 on chromosome 6A, 3A, and 1A of T. monococcum, respectively. Molecular analysis of the putatively linked markers showed that brc1 mapped on chromosome 6AS between Xbarc37 and Xbarc113 markers, brc2 on chromosome 3AL between Xcfd62 and Xcfa2170 markers whereas brc3 mapped on chromosome 1AL between Xgwm135 and Xwmc470 markers. Isolation and mapping of three different brittle culm mutants in wheat for the first time shows that there might be many more genes in wheat which affect synthesis and deposition of cellulose.  相似文献   
992.
The selection of cross-compatible cultivars is essential to ensure fruit set in self-incompatible species like Japanese plum and thus the S-genotype must be determined in order to establish incompatibility groups. In this study an improved Japanese plum S-genotyping method, based in polymerase chain reaction and capillary electrophoresis detection of intron polymorphisms of S-locus genes, S-RNase and SFB, has been assayed and validated in a wide sample of cultivars. This method allows a more precise determination of amplified fragment sizes and therefore a better differentiation of self-incompatibility alleles. The assayed methodology was proven effective in the detection of 13 different S-alleles of S-RNases and SFBs and was used to S-genotype 105 Japanese plum cultivars, 32 of which are described by first time in this work. Analysed cultivars were assigned into 11 incompatibility groups and two new incompatibility groups (XX and XXI) were identified, increasing to 21 the number of incompatibility groups described in this crop.  相似文献   
993.
Solidity of microsatellite markers is a key issue for varietal identification, especially when they are used for legal purposes, what includes their probable future use in the distinctness, uniformity and stability testing of new varieties needed for the granting of Plant Breeders’ Rights. Nine grapevine microsatellites (VVS2, VVMD5, VVMD27, VVMD28, ssrVrZAG29, ssrVrZAG62, ssrVrZAG67, ssrVrZAG83 and ssrVrZAG112), which had previously demonstrated its capacity to discriminate any grapevine variety, have been assessed to evaluate its uniformity and stability. 19 varieties were selected, representative of a high diversity for morphological, agronomical, cultural and historical aspects, as well as for microsatellite allele variability. Then, for each variety, uniformity and stability were evaluated through the analysis of 50 plants from each of three different plots, and five plants from each of seven additional plots. Material from 4,137 plants of 229 plots of the 19 varieties was sampled in seven countries. Of 3,654 plants analyzed with the set of nine microsatellites, 3,299 were of the right variety and used for the survey. An average of 172 individual values was studied for each allele of each microsatellite of each variety, and none differences were detected that could not be explained as technical variations, with the exception of several putative chimeras in two varieties. Of the total of 171 variety x microsatellite combinations, only in one combination (‘Merlot’ x VVMD27) the number of off-types exceeded the threshold allowed. The remaining 170 combinations have been found uniform and stable according to internationally accepted rules.  相似文献   
994.
Maize grey leaf spot (GLS) disease remains an important foliar disease in sub-Saharan Africa accounting for more than 25% yield losses in maize. Information on inheritance of GLS resistance of germplasm adapted to African environments is required in new sources being identified. Therefore, hybrids generated from a 10 × 10 half-diallel mating of tropical advanced maize inbred lines were evaluated in six environments to determine combining ability, genotype × environment interaction (G × E) and the impact of GLS disease on grain yield. General combining ability effects were highly significant and accounted for 72 and 68% of the variation for GLS resistance and grain yield, respectively. Significant specific combining ability effects associated with reduced disease levels were observed in some hybrids when one parent was resistant, and these may be exploited in developing single cross maize hybrids. Regression analysis showed a 260–320 kg ha?1 decrease in maize grain yield per each increase in GLS disease severity score, and significant associations (r = ?0.31 to ?0.60) were observed between grain yield and GLS severity scores. This showed the potential of GLS disease to reduce yield in susceptible varieties grown under favourable disease conditions, without control measures. Genotype and genotype × environment biplots and correlation analysis indicated that the significant G × E observed was not due to changes in hybrid ranking, implying absence of a significant crossover interaction. Therefore, predominance of additive gene effects imply that breeding progress for GLS disease resistance would be made through selection and this could be achieved at a few hot-spot sites, such as Baynesfield and Cedara locations in South Africa, and still deploy the resistant germplasm to other environments in which they are adapted.  相似文献   
995.
Estimating variation in grain mineral concentration and bioavailability in relation to grain yield and the year of cultivar release is important for breeding wheat with increased content of bioavailable minerals. The grain yield and yield components, grain phytate concentration, and concentration and bioavailability of minerals (zinc Zn, iron Fe and calcium Ca) in wheat grains were estimated in 40 wheat cultivars released in Punjab (Pakistan) during the last five decades. Mean grain Zn and Ca concentrations in current-cultivars were significantly lower (≥14%) than in obsolete cultivars released during the Green Revolution (1965–1976). Much of this variation was related to increased grain weight in current-cultivars. There was a positive correlation among minerals (r = 0.39 or higher, n = 40) and minerals with phytate in wheat grains (r = 0.38 or higher, n = 40). The tested cultivars varied widely in grain yield and grain phytate-to-mineral molar ratios (phytate:mineral). Compared to obsolete cultivars, the current-cultivars had a higher phytate:mineral ratio in grains, indicating poor bioavailability of minerals to humans. The study revealed a non-significant relationship between grain yield and phytate:mineral ratios in grains. Therefore, breeding for lower phytate:mineral ratios in wheat grains can ensure increased mineral bioavailability without significant reduction in the yield potential. Future breeding should be focused on developing new genotypes suitable for mineral biofortification and with increased mineral bioavailability in grains.  相似文献   
996.
Genetic expression of a trait is complicated and it is usually associated with many genes including their interactions (epistasis) and genotype-by-environment interactions. Genetic mapping currently focuses primarily on additive models or marginal genetic effects due to the complexity of epistatic effects. Thus, there exists a need to appropriately identify favorable epistatic effects for important biological traits. Several multifactor dimensionality reduction (MDR) based methods are important resources to identify high-order gene–gene interactions. These methods are mainly focused on human genetic studies. Many traits in plant systems are not only quantitatively inherited but also are often measured in repeated field plots under multiple environments. In this study, we proposed a mixed model based MDR approach, which is suitable for inclusion of various fixed and random effects. This approach was used to analyze a cotton data set that included eight agronomic and fiber traits and 20 DNA markers. The results revealed high order epistatic effects were detected for most of these traits using this modified MDR approach.  相似文献   
997.
Host plant resistance is the preferred management strategy for Asian rice gall midge (Orseolia oryzae), a serious pest in many rice-growing countries. Identification of simple sequence repeat (SSR) markers that are tightly linked to pest resistance genes can accelerate development of gene pyramids for durable/multiple resistance. Based on conventional and molecular allelism tests, we report herein that rice genotype Aganni possesses Gm8 gene, conferring hypersensitive independent (HR– type) resistance to gall midge biotypes GMB1, GMB2, GMB3, GMB4, and GMB4M. The gene Gm8 was mapped to chromosome 8 within a 400-kbp region, and the SSR markers RM22685 and RM22709 flank the gene closely. Using these closely linked flanking markers, nine other gall midge-resistant genotypes were identified as carrying the same gene Gm8. Through marker-assisted selection, Gm8 has been introgressed into an elite bacterial blight-resistant cultivar, Improved Samba-Mahsuri (IS).  相似文献   
998.
The Pi-z gene in rice confers resistance to a wide range of races of the rice blast fungus, Magnaporthe oryzae. The objective of this study was to characterize Pi-z in 111 rice germplasm accessions using DNA markers and pathogenicity assays. The existence of Pi-z in rice germplasm was detected by using four simple sequence repeat (SSR) markers (RM527, AP4791, AP5659-1, AP5659-5) closely linked to Pi-z, and was verified using pathogenicity assays with an avirulent strain (IE1k) and two virulent races (IB33 and IB49). Among 111 germplasm accessions evaluated, 73 were found to contain the Pi-z gene using both SSR markers and pathogenicity assays. The remaining 38 germplasm accessions were found to be inconsistent in their responses to the blast races IB33, IEIk and IB49 with expected SSR marker alleles, suggesting the presence of unexpected SSR alleles and additional R gene(s). These characterized germplasm can be used for genetic studies and marker-assisted breeding for improving blast resistance in rice.  相似文献   
999.
Every growing season, paddy fields are kept both flooded and drained for a significant period of time. As a consequence, these soils develop distinct physico-chemical characteristics. For practical reasons, these soils are mostly sampled under dry conditions, but the question arises how representative the results are for the wet growing conditions. Therefore, the apparent electrical conductivity (ECa) of a 1.4 ha alluvial paddy field located in the Brahmaputra floodplain of Bangladesh was measured in both dry and wet conditions by a sensing system using the electromagnetic induction sensor EM38, which does not require physical contact with the soil, and compared both surveys. Due to the smooth water surface under wet conditions which ensured increased stability of the sensing platform, the results of the survey showed considerably reduced micro-scale variability of ECa. Furthermore, the wet survey results more reliably furnished soil-related information mainly due to the absence of soil moisture dynamics. The differences between ECa under wet and dry conditions were attributed to differences in soil texture, mainly the sand content variation having considerable effect on soil moisture differences when flooded following drainage. Accordingly, the largest differences between ECa under wet and dry conditions were found in those parts of the field with a large sand content. Hence, the conclusion was that an ECa survey on flooded fields has an added value to precision soil management.  相似文献   
1000.
A plant based sensing method for nutrition stress monitoring   总被引:1,自引:0,他引:1  
Due to economical and ecological reasons it is important to provide the necessary flexibility in fertilizer management to respond to differences in plant nutrients requirements. Plant-based sensors have potential to provide more accurate and on-line information regarding crop bio-responses to environmental stress and could overcome limitations of traditional methods which focus only on monitoring parameters of soil. Current research regarding on-line plant stress sensing techniques concentrates on spectroscopic and image processing methods. These techniques have many limitations connected with their sensitivity to environmental interferences. In recent years, impedance spectroscopy has become a well-known non-invasive tool for describing the electrical properties of many systems. The research hypothesis tested was that information provided by Electrical Impedance Spectroscopy is correlated with tomato plant stress caused by lack of mineral nutrients in the growth medium. The experiment was conducted with two sets of hydroponically-grown tomato plants (Lycopersicon esculentum Mill., cv. ‘Maliniak’). During the experiment the tomato plants were fed alternately with flow of necessary nutrients and with distilled water. The impedance spectra were measured by scanning frequencies from 100 Hz to 50 kHz to determine the most sensitive frequency. A Nutrition Index was proposed for indicating variability of mineral nutrition within plants, and its correlation with experimental plant data was tested. Data showed that the relation between the Nutrition Index and the stress caused by lack of mineral nutrients in the growing medium was a monotonic function in the case of study. The results presented in the paper support the concept that the electrical impedance spectroscopy is a non-destructive, economical and reliable measurement method, which can be utilised for plant nutrition stress monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号